
Aelerated Data-�ow AnalysisJér�me Leroux and Grégoire SutreLaBRI, Université de Bordeaux, CNRSDomaine Universitaire, 351, ours de la Libération, 33405 Talene, Frane{leroux, sutre}�labri.frAbstrat. Aeleration in symboli veri�ation onsists in omputingthe exat e�et of some ontrol-�ow loops in order to speed up the iter-ative �x-point omputation of reahable states. Even if no terminationguarantee is provided in theory, suessful results were obtained in pra-tie by di�erent tools implementing this framework. In this paper, theaeleration framework is extended to data-�ow analysis. Compared toa lassial widening/narrowing-based abstrat interpretation, the loss ofpreision is ontrolled here by the hoie of the abstrat domain and doesnot depend on the way the abstrat value is omputed. Our approahis geared towards preision, but we don't loose e�ieny on the way.Indeed, we provide a ubi-time aeleration-based algorithm for solvinginterval onstraints with full multipliation.1 IntrodutionModel-heking safety properties on a given system usually redues to the om-putation of a preise enough invariant of the system. In traditional symboli veri-�ation, the set of all reahable (onrete) on�gurations is omputed iterativelyfrom the initial states by a standard �x-point omputation. This reahability setis the most preise invariant, but quite often (in partiular for software systems) amuh oarser invariant is su�ient to prove orretness of the system. Data-�owanalysis, and in partiular abstrat interpretation [CC77℄, provides a powerfulframework to develop analysis for omputing suh approximate invariants.A data-�ow analysis of a program basially onsists in the hoie of a (poten-tially in�nite) omplete lattie of data properties for program variables togetherwith transfer funtions for program instrutions. The merge over all path (MOP)solution, whih provides the most preise abstrat invariant, is in general over-approximated by the minimum �x-point (MFP) solution, whih is omputableby Kleene �x-point iteration. However the omputation may diverge and widen-ing/narrowing operators are often used in order to enfore onvergene at theexpense of preision [CC77, CC92℄. While often providing very good results, thesolution omputed with widenings and narrowings may not be the MFP solu-tion. This may lead to abstrat invariants that are too oarse to prove safetyproperties on the system under hek.Tehniques to help onvergene of Kleene �x-point iterations have also beeninvestigated in symboli veri�ation of in�nite-state systems. In these works, the



objetive is to ompute the (potentially in�nite) reahability set for automatawith variables ranging over unbounded data, suh as ounters, loks, staks orqueues. So-alled aeleration tehniques (or meta-transitions) have been devel-opped [BW94, BGWW97, CJ98, FIS03, FL02℄ to speed up the iterative om-putation of the reahability set. Basially, aeleration onsists in omputingin one step the e�et of iterating a given loop (of the ontrol �ow graph). A-elerated symboli model hekers suh as Lash [Las℄, TReX [ABS01℄, andFast [BFLP03℄ suessfully implement this approah.Our ontribution. In this paper, we extend aeleration tehniques to data-�owanalysis and we apply these ideas to interval analysis. Aeleration tehniquesfor (onrete) reahability set omputations may be equivalently formalized �se-mantially� in terms of ontrol-�ow path languages [LS05℄ or �syntatially� interms of ontrol-�ow graph unfoldings [BFLS05℄. We extend these onepts tothe MFP solution in a generi data-�ow analysis framework, and we establishseveral links between the resulting notions. It turns out that, for data-�ow anal-ysis, the resulting �syntati� notion, based on graph �attenings, is more generalthat the resulting �semanti� notion, based on restrited regular expressions. Wethen propose a generi �attening-based semi-algorithm for omputing the MFPsolution. This semi-algorithm may be viewed as a generi template for applyingaeleration-based tehniques to onstraint solving.We then show how to instantiate the generi �attening-based semi-algorithmin order to obtain an e�ient onstraint solver1 for integers, for a rather largelass of onstraints using addition, (monotoni) multipliation, fatorial, or anyother bounded-inreasing funtion. The intuition behind our algorithm is thefollowing: we propagate onstraints in a breadth-�rst manner as long as theleast solution is not obtained, and variables involved in a �useful� propagationare stored in a graph-like struture. As soon as a yle appears in this graph,we ompute the least solution of the set of onstraints orresponding to thisyle. It turns out that this aeleration-based algorithm always terminates inubi-time.As the main result of the paper, we then show how to ompute in ubi-time the least solution for interval onstraints with full addition and multiplia-tion, and intersetion with a onstant. The proof uses a least-solution preservingtranslation from interval onstraints to the lass of integer onstraints introduedpreviously.Related work. In [Kar76℄, Karr presented a polynomial-time algorithm thatomputes the set of all a�ne relations that hold in a given ontrol loation ofa (numerial) program. Reently, the omplexity of this algorithm was revisitedin [MOS04℄ and a �ne upper-bound was presented. For interval onstraints witha�ne transfer funtions, the exat least solution may be omputed in ubi-time [SW04℄. Strategy iteration was proposed in [CGG+05℄ to speed up Kleene�x-point iteration with better preision than widenings and narrowings, and this1 By solver, we mean an algorithm omputing the least solution of onstraint systems.2



approah has been developped in [TG07℄ for interval onstraint solving with fulladdition, multipliation and intersetion. Strategy iteration may be viewed asan instane of our generi �attening-based semi-algorithm. The lass of intervalonstraints that we onsider in this paper ontains the one in [SW04℄ (whihdoes not inlude interval multipliation) but it is more restritive than the onein [TG07℄. We are able to maintain the same ubi-time omplexity as in [SW04℄,and it is still an open problem whether interval onstraint solving an be per-formed in polynomial-time for the larger lass onsidered in [TG07℄.Outline. The paper is organized as follows. Setion 2 presents our aeleration-based approah to data-�ow analysis. We then fous on interval onstraint-baseddata-�ow analysis. We present in setion 3 a ubi-time algorithm for solving alarge lass of onstraints over the integers, and we show in setion 4 how to trans-late interval onstraints (with multipliation) into the previous lass of integeronstraints, hene providing a ubi-time algorithm for interval onstraints. Se-tion 5 presents some ideas for future work. Please note that most proofs are onlyskethed in the paper, but detailed proofs are given in appendix. This paper isthe long version of our SAS 2007 paper.2 Aeleration in Data Flow AnalysisThis setion is devoted to the notion of aeleration in the ontext of data-�ow analysis. Aeleration tehniques for (onrete) reahability set omputa-tions [BW94, BGWW97, CJ98, FIS03, FL02, LS05, BFLS05℄ may be equiva-lently formulated in terms of ontrol-�ow path languages or ontrol-�ow graphunfoldings. We shall observe that this equivalene does not hold anymore whenthese notions are lifted to data-�ow analysis. All results in this setion an easilybe derived from the de�nitions, and they are thus presented without proofs.2.1 Latties, words and graphsWe respetively denote by N and Z the usual sets of nonnegative integers andintegers. For any set S, we write P(S) for the set of subsets of S. The identityfuntion over S is written 1S , and shortly 1 when the set S is lear from theontext.Reall that a omplete lattie is any partially ordered set (A,⊑) suh thatevery subset X ⊆ A has a least upper bound ⊔

X and a greatest lower boundd
X . The supremum ⊔

A and the in�mum d
A are respetively denoted by ⊤and ⊥. A funtion f ∈ A → A is monotoni if f(x) ⊑ f(y) for all x ⊑ y in A.Reall that from Knaster-Tarski's Fix-point Theorem, any monotoni funtion

f ∈ A → A has a least �x-point given by d
{a ∈ A | f(a) ⊑ a}. For anymonotoni funtion f ∈ A → A, we denote by f∗ the monotoni funtion in

A → A de�ned by f∗(x) =
d
{a ∈ A | (x ⊔ f(a)) ⊑ a}, in other words f∗(x) isthe least post-�x-point of f greater than x.3



For any omplete lattie (A,⊑) and any set S, we also denote by ⊑ thepartial order on S → A de�ned as the point-wise extension of ⊑, i.e. f ⊑ gi� f(x) ⊑ g(x) for all x ∈ S. The partially ordered set (S → A,⊑) is also aomplete lattie, with lub ⊔ and glb d satisfying (
⊔

F )(s) =
⊔

{f(s) | f ∈ F}and (
d

F )(s) =
d
{f(s) | f ∈ F} for any subset F ⊆ S → A. Given any integer

n ≥ 0, we denote by An the set of n-tuples over A. We identify An with the set
{1, . . . , n} → A, and therefore An equipped with the point-wise extension of ⊑also forms a omplete lattie.Let Σ be an alphabet (a �nite set of letters). We write Σ∗ for the set of all(�nite) words l0 · · · ln over Σ, and ε denotes the empty word. Given any twowords x and y, we denote by x · y (shortly written xy) their onatenation. Asubset of Σ∗ is alled a language.A (direted) graph is any pair G = (V,→) where V is a set of verties and
→ is a binary relation over V . A pair (v, v′) in → is alled an edge. A (�nite)path in G is any (non-empty) sequene v0, . . . , vk of verties, also written v0 →
v1 · · · vk−1 → vk, suh that vi−1 → vi for all 1 ≤ i ≤ k. The nonnegative integer
k is alled the length of the path, and the verties v0 and vk are respetivelyalled the soure and target of the path. A yle on a vertex v is any path ofnon-zero length with soure and target equal to v. A yle with no repeatedverties other than the soure and the target is alled elementary. We write ∗→for the re�exive-transitive losure of→. A strongly onneted omponent (shortlySCC ) in G is any equivalene lass for the equivalene relation ∗

↔ on V de�nedby: v
∗
↔ v′ if v

∗
→ v′ and v′

∗
→ v. We say that an SCC is yli when it ontainsa unique elementary yle up to yli permutation.2.2 Programs and data-�ow solutionsFor the rest of this setion, we onsider a omplete lattie (A,⊑). In our setting,a program will represent an instane (for some onrete program) of a data-�owanalysis framework over (A,⊑). To simplify the presentation, we will onsiderprograms given as unstrutured olletions of ommands (this is not restritiveas ontrol-�ow may be expressed through variables).Formally, assume a �nite set X of variables. A ommand on X is any tuple

〈X1, . . . , Xn; f ; X〉, also written X := f(X1, . . . , Xn), where n ∈ N is an arity,
X1, . . . , Xn ∈ X are pairwise disjoint input variables, f ∈ An → A is a monotonitransfer funtion, and X ∈ X is an output variable. Intuitively, a ommand
X := f(X1, . . . , Xn) assigns variable X to f(X1, . . . , Xn) and lets all othervariables untouhed. A valuation on X is any funtion ρ in X → A. The data-�owsemantis JcK of any ommand c = 〈X1, . . . , Xn; f ; X〉 on X is the monotonifuntion in (X → A) → (X → A) de�ned by JcK(ρ)(X) = f(ρ(X1), . . . , ρ(Xn))and JcK(ρ)(Y ) = ρ(Y ) for all Y 6= X .A program over (A,⊑) is any pair P = (X , C) where X is a �nite set ofvariables and C is a �nite set of ommands on X .4



Example 2.1. Consider the C-style soure ode given on the left-hand side below,that we want to analyse with the omplete lattie (I,⊑) of intervals of Z. Theorresponding program E is depited graphially on the right-hand side below.1 x = 1;2 while (x ≤ 100) {3 if (x ≥ 50) x = x−3;4 else x = x+2;5 }
X1 X2

X3

X5

c0

c1

c2 c3 c4

c5

Formally, the set of variables of E is {X1, X2, X3, X5}, representing the valueof the variable x at program points 1, 2, 3 and 5. The set of ommands of E is
{c0, c1, c2, c3, c4, c5}, with:

c0 : X1 := ⊤ c3 : X2 := (X3 ⊓ [50, +∞])− {3}
c1 : X2 := ({0} . X1) + {1} c4 : X2 := (X3 ⊓ ]−∞, 49]) + {2}
c2 : X3 := X2 ⊓ ]−∞, 100] c5 : X5 := X2 ⊓ [101, +∞[We will use language-theoreti terminology and notations for traes in aprogram. A trae in P is any word c1 · · · ck over C. The empty word ε denotesthe empty trae and C∗ denotes the set of all traes in P. The data-�ow semantisis extended to traes in the obvious way: JεK = 1 and Jc · σK = JσK ◦ JcK. Observethat Jσ · σ′K = Jσ′K ◦ JσK for every σ, σ′ ∈ C∗. We also extend the data-�owsemantis to sets of traes by JLK =

⊔

σ∈L JσK for every L ⊆ C∗. Observe that
JLK is a monotoni funtion in (X → A)→ (X → A), and moreover JL1 ∪ L2K =
JL1K ⊔ JL2K for every L1, L2 ⊆ C∗.Given a program P = (X , C) over (A,⊑), the minimum �x-point solution(MFP-solution) of P, written ΛP, is the valuation de�ned as follows:

ΛP =
l
{ρ ∈ X → A | JcK(ρ) ⊑ ρ for all c ∈ C}Example 2.2. The MFP-solution of the program E from Example 2.1 is the val-uation:

ΛE = {X1 7→ ⊤, X2 7→ [1, 51], X3 7→ [1, 51], X5 7→ ⊥}Reall that we denote by JCK∗(ρ) the least post-�x-point of JCK greater than
ρ. Therefore it follows from the de�nitions that ΛP = JCK∗(⊥). In our framework,themerge over all paths solution (MOP-solution) may be de�ned as the valuation
JC∗K(⊥), and the following proposition realls well-known links between theMOP-solution, the MFP-solution and the asending Kleene hain.Proposition 2.3. For any program P = (X , C) over a omplete lattie (A,⊑),we have:

JC∗K(⊥) ⊑
⊔

k∈N JCKk
(⊥) ⊑ JCK∗(⊥) = ΛP5



2.3 Aelerability and �atteningWe now extend notions from aelerated symboli veri�ation to this data-�owanalysis framework. Aeleration in symboli veri�ation was �rst introduedsemantially, in the form ofmeta-transitions [BW94, BGWW97℄, whih basiallysimulate the e�et of taking a given ontrol-�ow loop arbitrarily many times.This leads us to the following proposition and de�nition.Proposition 2.4. Let P = (X , C) denote a program over (A,⊑). For any lan-guages L1, . . . , Lk ⊆ C∗, we have (JLkK∗ ◦ · · · ◦ JL1K∗)(⊥) ⊑ ΛP.De�nition 2.5. A program P = (X , C) over a omplete lattie (A,⊑) is alledMFP-aelerable if ΛP = (JσkK∗◦· · ·◦Jσ1K∗)(⊥) for some words σ1, . . . , σk ∈ C∗.The following proposition shows that any program P for whih the asendingKleene hain stabilizes after �nitely many steps is MFP-aelerable.Proposition 2.6. Let P = (X , C) denote a program over (A,⊑). If we have
JCKk

(⊥) = ΛP for some k ∈ N, then P is MFP-aelerable.Aeleration in symboli veri�ation was later expressed syntatially, interms of �at graph unfoldings. When lifted to data-�ow analysis, this leads toa more general onept than aelerability, and we will show that these two no-tions oinide for �onrete� programs (as in symboli veri�ation). We say thata program P is single-input if the arity of every ommand in P is at most 1.Given a program P = (X , C) over (A,⊑), an unfolding of P is any pair (P′, κ)where P′ = (X ′, C′) is a program and κ ∈ X ′ → X is a variable renaming, andsuh that 〈κ(X ′1), . . . , κ(X ′n); f ; κ(X ′)〉 is a ommand in C for every ommand
〈X ′1, . . . , X

′
n; f ; X ′〉 in C′. The renaming κ indues a Galois surjetion (X ′ →

A,⊑) −−−→←−−−−→κ

←−κ
(X → A,⊑) where←−κ and −→κ are de�ned as expeted by←−κ (ρ) = ρ◦κand −→κ (ρ′)(X) =

⊔

κ(X′)=X

ρ′(X ′).We assoiate a bipartite graph to any program in a natural way: verties areeither variables or ommands, and edges denote input and output variables ofommands. Formally, given a program P = (X , C), the program graph of P isthe labeled graph GP where X ∪ C is the set of verties and with edges (c, X)and (Xi, c) for every ommand c = 〈X1, . . . , Xn; f ; X〉 in C and 1 ≤ i ≤ n. Wesay that P is �at if there is no SCC in GP ontaining two distint ommandswith the same output variable. A �attening of P is any unfolding (P′, κ) of Psuh that P′ is �at.Example 2.7. A �attening of the program E from Example 2.1 is given below.Intuitively, this �attening represents a possible unrolling of the while-loop wherethe two branhes of the inner onditional alternate.6



X1 X2

X ′2X3 X ′3

X2 X5

c0

c1

c2 c4

c5

c′2c3Lemma 2.8. Let P = (X , C) denote a program over (A,⊑). For any unfolding
(P′, κ) of P, with P′ = (X ′, C′), we have −→κ ◦ JC′K∗ ◦←−κ ⊑ JCK∗.Proposition 2.9. Let P = (X , C) denote a program over (A,⊑). For any un-folding (P′, κ) of P, we have −→κ (ΛP′) ⊑ ΛP.De�nition 2.10. A program P = (X , C) over a omplete lattie (A,⊑) is alledMFP-�attable if ΛP = −→κ (ΛP′) for some �attening (P′, κ) of P.Observe that any �at program is trivially MFP-�attable. The following propo-sition establishes links between aelerability and �attability. As a orollary tothe proposition, we obtain that MFP-aelerability and MFP-�attability areequivalent for single-input programs.Proposition 2.11. The following relationships hold for programs over (A,⊑):
i) MFP-aelerability implies MFP-�attability.

ii) MFP-�attability implies MFP-aelerability for single-input programs.Proof (Sketh). To prove i), we use the fat that for every words σ1, . . . , σk ∈
C∗, there exists a �nite-state automaton A without nested yles reognizing
σ∗1 · · ·σ

∗
k. The �produt� of any program P with A yields a �attening that �sim-ulates� the e�et of σ∗1 · · ·σ

∗
k on P. To prove ii), we observe that for any �atsingle-input program P, eah non-trivial SCC of GP is yli. We pik a �yli�trae (whih is unique up to irular permutation) for eah SCC, and we arrangethese traes to prove that P is aelerable. Bakward preservation of aelera-bility under unfolding onludes the proof. ⊓⊔Remark 2.12. For any labeled transition system S with a set S of states, the for-ward olleting semantis of S may naturally be given as a single-input program

PS over (P(S),⊆). With respet to this translation (from S to PS), the notion of�attability developped for aelerated symboli veri�ation of labeled transitionsystems oinide with the notions of MFP-aelerability and MFP-�attabilityde�ned above.Reall that our main goal is to ompute (exat) MFP-solutions using aele-ration-based tehniques. Aording to the previous propositions, �attening-basedomputation of the MFP-solution seems to be the most promising approah, andwe will fous on this approah for the rest of the paper.7



2.4 Generi �attening-based onstraint solvingIt is well known that the MFP-solution of a program may also be expressedas the least solution of a onstraint system, and we will use this formulationfor the rest of the paper. We will use some new terminology to re�et thisnew formulation, however notations and de�nitions will remain the same. Aommand 〈X1, . . . , Xn; f ; X〉 will now be alled a onstraint, and will also bewritten X ⊒ f(X1, . . . , Xn). A program over (A,⊑) will now be alled a on-straint system over (A,⊑), and the MFP-solution will be alled the least solution.Among all aeleration-based notions de�ned previously, we will only onsiderMFP-�attability for onstraint systems, and hene we will shortly write �attableinstead of MFP-�attable.Given a onstraint system P = (X , C) over (A,⊑), any valuation ρ ∈ X → Asuh that ρ ⊑ JCK(ρ) (resp. ρ ⊒ JCK(ρ)) is alled a pre-solution (resp. a post-solution). A post-solution is also shortly alled a solution. Observe that the leastsolution ΛP is the greatest lower bound of all solutions of C.We now present a generi �attening-based semi-algorithm for onstraint solv-ing. Intuitively, this semi-algorithm performs a propagation of onstraints start-ing from the valuation⊥, but at eah step we extrat a �at �subset� of onstraints(possibly by dupliating some variables) and we update the urrent valuationwith the least solution of this �at �subset� of onstraints.1 Solve(P = (X , C) : a onstraint system)2 ρ← ⊥3 while JCK(ρ) 6⊑ ρ4 onstrut a �attening (P′, κ) of P, where P′ = (X ′, C′)5 ρ′ ← ρ ◦ κ6 ρ′′ ← JC′K∗(ρ′) { −→κ (ρ′′) ⊑ JCK∗(ρ) from Lemma 2.8 }7 ρ← ρ ⊔ −→κ (ρ′′)8 return ρThe Solve semi-algorithm may be viewed as a generi template for applyingaeleration-based tehniques to onstraint solving. The two main hallenges are(1) the onstrution of a suitable �attening at line 4, and (2) the omputationof the least solution for �at onstraint systems (line 6). However, assuming thatall involved operations are e�etive, this semi-algorithm is orret (i.e. if it ter-minates then the returned valuation is the least solution of input onstraintsystem), and it is omplete for �attable onstraint systems (i.e. the input on-straint system is �attable if and only if there exists hoies of �attenings at line 4suh that the while-loop terminates). We will show in the sequel how to instan-tiate the Solve semi-algorithm in order to obtain an e�ient onstraint solverfor integers and intervals. 8



3 Integer ConstraintsFollowing [SW04, TG07℄, we �rst investigate integer onstraint solving in orderto derive in the next setion an interval solver. This approah is motivated bythe enoding of an interval by two integers.The omplete lattie of integers Z = Z ∪ {−∞, +∞} is equipped with thenatural order:
−∞ < · · · < −2 < −1 < 0 < 1 < 2 < · · · < +∞Observe that the least upper bound x ∨ y and the greatest lower bound x ∧

y respetively orrespond to the maximum and the minimum. Addition andmultipliation funtions are extended from Z to Z as in [TG07℄:
x.0 = 0.x = 0 x + (−∞) = (−∞) + x = −∞ for all x

x.(+∞) = (+∞).x = +∞ x.(−∞) = (−∞).x = −∞ for all x > 0
x.(+∞) = (+∞).x = −∞ x.(−∞) = (−∞).x = +∞ for all x < 0

x + (+∞) = (+∞) + x = +∞ for all x > −∞A onstraint system P = (X , C) is said yli if the set of onstraints C isontained in a yli SCC. An example is given below.
X0

c1

X1

c2

Xi

Xi−1

ci

ci−1

X2
. . .

. . .

Observe that a yli onstraint system is �at. A yli �attening (P′, κ) where
P′ = (X ′, C′) an be naturally assoiated to any yle X0 → c1 → X1 · · · →
cn → Xn = X0 of a onstraint system P, by onsidering the set X ′ of variablesobtained from X by adding n new opies Z1, . . . , Zn of X1, . . . , Xn with the or-responding renaming κ that extends the identity funtion over X by κ(Zi) = Xi,and by onsidering the set of onstraints C′ = {c′1, . . . , c

′
n} where c′i is obtainedfrom ci by renaming the output variable Xi by Zi and by renaming the inputvariable Xi−1 by Zi−1 where Z0 = Zn.In setion 3.1, we introdue an instane of the generi Solve semi-algorithmthat solves onstraint systems that satisfy a property alled bounded-inreasing.This lass of onstraint systems is extended in setion 3.2 with test onstraintsallowing a natural translation of interval onstraint systems to ontraint systemsin this lass. 9



3.1 Bounded-inreasing onstraint systemsA monotoni funtion f ∈ Zk → Z is said bounded-inreasing if for any x1 < x2suh that f(⊥) < f(x1) and f(x2) < f(⊤) we have f(x1) < f(x2). Intuitively fis inreasing over the domain of x ∈ Zk suh that f(x) 6∈ {f(⊥), f(⊤)}.Example 3.1. The guarded identity x 7→ x∧b where b ∈ Z, the addition (x, y) 7→
x+ y, the two multipliation funtions mul+ and mul− de�ned below, the powerby two x 7→ 2x∨0, the fatorial x 7→!(x∨ 1) are bounded-inreasing. However theminimum and the maximum funtions are not bounded-inreasing.

mul+(x, y) =

{

x.y if x, y ≥ 0

0 otherwise mul−(x, y) =

{

−x.y if x, y < 0

0 otherwiseA bounded-inreasing onstraint is a onstraint of the form X ≥ f(X1, . . . , Xk)where f is a bounded-inreasing funtion. Suh a onstraint is said upper-saturated(resp. lower-saturated) by a valuation ρ if ρ(X) ≥ f(⊤) (resp. ρ(X) ≤ f(⊥)).Given a onstraint system P = (X , C) and a bounded-inreasing onstraint
c ∈ C upper-saturated by a valuation ρ0, observe that JCK∗(ρ0) = JC′K∗(ρ0)where C′ = C\{c}. Intuitively, an upper-saturated onstraint for ρ0 an besafely removed from a onstraint system without modifying the least solutiongreater than ρ0. The following lemma will be useful to obtain upper-saturatedonstraints.Lemma 3.2. Let P be a yli bounded-inreasing onstraint system. If ρ0 is apre-solution of P that does not lower-saturate any onstraint, then either ρ0 is asolution or JCK∗(ρ0) upper-saturates a onstraint.Proof. (Sketh). Let X0 → c1 → X1 → · · · → cn → Xn = X0 be the unique(up to a yli permutation) yle in the graph assoiated to P. Consider a pre-solution ρ0 of P that is not a solution. Let us denote by (ρi)i≥0 the sequene ofvaluations de�ned indutivelly by ρi+1 = ρi ∨ JCK(ρi). There are two ases:� either there exists i ≥ 0 suh that ρi upper-saturates a onstraint cj . Sine

ρi ≤ JCK∗(ρ0), we dedue that JCK∗(ρ0) upper-saturates cj.� or c1, . . . , cn are not upper-saturated by any of the ρi. As these onstraintsare bounded-inreasing, the sequene (ρi)i≥0 is stritly inreasing. Thus
(
∨

i≥0 ρi)(Xj) = +∞ for any 1 ≤ j ≤ n. Sine ∨

i≥0 ρi ≤ JCK∗(ρ0), wededue that JCK∗(ρ0) upper-saturates c1, . . . , cn.In both ases, JCK∗(ρ0) upper-saturates at least one onstraint. ⊓⊔1 CyliSolve (P = (X , C) : a yli bounded−inreasing onstraint system,2 ρ0 : a valuation)3 let X0 → c1 → X1 · · · → cn → Xn = X0 be the ``unique'' elementary yle4 ρ← ρ05 for i = 1 to n do 10



6 ρ← ρ ∨ JciK(ρ)7 for i = 1 to n do8 ρ← ρ ∨ JciK(ρ)9 if ρ ≥ JCK(ρ)10 return ρ11 for i = 1 to n do12 ρ(Xi)← +∞13 for i = 1 to n do14 ρ← ρ ∧ JciK(ρ)15 for i = 1 to n do16 ρ← ρ ∧ JciK(ρ)17 return ρProposition 3.3. The algorithm CyliSolve returns JCK∗(ρ0) for any ylionstraint system P and for any valuation ρ0.Proof. (Sketh). The �rst two loops (lines 5�8) propagate the valuation ρ0 alongthe yle two times. If the resulting valuation is not a solution at this point, thenit is a pre-solution and no onstraint is lower-saturated. From Lemma 3.2, weget that JCK∗(ρ0) upper-saturates some onstraint. Observe that the valuation ρafter the third loop (lines 11�12) satis�es JCK∗(ρ0) ⊑ ρ. The desending iterationof the last two loops yields (at line 17) JCK∗(ρ0). ⊓⊔We may now present our ubi time algorithm for solving bounded-inreasingonstraint systems. The main loop of this algorithm �rst performs |C|+1 roundsof Round Robin iterations and keeps trak for eah variable of the last onstraintthat updated its value. This information is stored in a partial funtion λ from Xto C. The seond part of the main loop heks whether there exists a yle in thesubgraph indued by λ, and if so it selets suh a yle and alls the CyliSolvealgorithm on it.1 SolveBI(P = (X , C) : a bounded−inreasing onstraint system,2 ρ0 : an initial valuation)3 ρ← ρ0 ∨ JCK(ρ0)4 while JCK(ρ) 6⊑ ρ5 λ← ∅ { λ is a partial funtion from X to C }6 repeat |C|+ 1 times7 for eah c ∈ C8 if ρ 6≥ JcK(ρ)9 ρ← ρ ∨ JcK(ρ)10 λ(X)← c, where X is the input variable of c11 if there exists an elementary yle X0 → λ(X1)→ X1 · · ·λ(Xn)→ X012 onstrut the orresponding yli �attening (P′, κ)13 ρ′ ← ρ ◦ κ14 ρ′′ ← CyliSolve(P′, ρ′) 11



15 ρ← ρ ∨ −→κ (ρ′′)16 return ρNote that the SolveBI algorithm is an instane of the Solve semi-algorithmwhere �attenings are dedued from yles indued by the partial funtion λ. Thefollowing proposition 3.4 shows that this algorithm terminates.Proposition 3.4. The algorithm SolveBI returns the least solution JCK∗(ρ0) ofa bounded-inreasing onstraint system P greater than a valuation ρ0. Moreover,the number of times the while loop is exeuted is bounded by one plus the numberof onstraints that are upper-saturated for JCK∗(ρ0) but not for ρ0.Proof. (Sketh). Observe that initially ρ = ρ0 ∨ JCK(ρ0). Thus, if during theexeution of the algorithm ρ(X) is updates by a onstraint c then neessary
c is not lower-saturated. That means if λ(X) is de�ned then c = λ(X) is notlower-saturated.Let ρ0 and ρ1 be the values of ρ respetively before and after the exeutionof the �rst two nested loops (line 5-9) and let ρ2 be the value of ρ after theexeution of line 14.Observe that if there does not exist an elementary yle satisfying the on-dition given in line 11, the graph assoiated to P restrited to the edges (X, c)if c = λ(X) and the edges (Xi, c) if Xi is an input variable of c is ayli. Thisgraph indues a natural partial order over the onstraints c of the form c = λ(X).An enumeration c1, . . . , cm of this onstraints ompatible with the partial orderprovides the relation ρ1 ≤ Jc1 . . . cmK(ρ0). Sine the loop 6-9 is exeuted at least
m + 1 times, we dedue that ρ1 is a solution of C.Lemma 3.2 shows that if ρ1 is not a solution of P then at least one onstraintis upper-saturated for ρ2 but not for ρ0. We dedue that the number of timesthe while loop is exeuted is bounded by one plus the number of onstraints thatare upper-saturated for JCK∗(ρ0) but not for ρ0. ⊓⊔3.2 Integer onstraint systemsA test funtion is a funtion θ>b or θ≥b with b ∈ Z of the following form:

θ≥b(x, y) =

{

y if x ≥ b

−∞ otherwise θ>b(x, y) =

{

y if x > b

−∞ otherwiseA test onstraint is a onstraint of the form X ≥ θ∼b(X1, X2) where θ∼b is atest funtion. Suh a onstraint c is said ative for a valuation ρ if ρ(X1) ∼ b.Given a valuation ρ suh that c is ative, observe that JcK(ρ) and Jc′K(ρ) areequal where c′ is the bounded-inreasing onstraint X ≥ X2. This onstraint c′is alled the ative form of c and denoted by act(c).In the sequel, an integer onstraint either refers to a bounded-inreasingonstraint or a test-onstraint. 12



1 SolveInteger (P = (X , C) : an integer onstraint system)2 ρ← ⊥3 Ct ← set of test onstraints in C4 C′ ← set of bounded−inreasing onstraints in C5 while JCK(ρ) 6⊑ ρ6 ρ← SolveBI((X , C′), ρ)7 for eah c ∈ Ct8 if c is ative for ρ9 Ct ← Ct\{c}10 C′ ← C′ ∪ {act(c)}11 return ρTheorem 3.5. The algorithm SolveInteger omputes the least solution of an in-teger onstraint system P = (X , C) by performing O((|X | + |C|)3) integer om-parisons and image omputation by some bounded-inreasing funtions.Proof. Let us denote by nt be the number of test onstraints in C. Observe thatif during the exeution of the while loop, no test onstraints beomes ative (line7-10) then ρ is a solution of P and the algorithm terminates. Thus this loop isexeuted at most 1+nt times. Let us denote by m1, . . . , mk the integers suh that
mi is equal to the number of times the while loop of SolveBI is exeuted. Sineafter the exeution there is mi−1 onstraints that beomes upper-saturated, wededue that ∑k

i=1(mi−1) ≤ n and in partiular ∑k

i=1 mi ≤ n+k ≤ 2.|C|. Thusthe algorithm SolveInteger omputes the least solution of an integer onstraintsystem P = (X , C) by performing O((|X |+|C|)3) integer omparisons and imageomputation by some bounded-inreasing funtions. ⊓⊔Remark 3.6. We dedue that any integer onstraint system is MFP-�attable.4 Interval ConstraintsIn this setion, we provide a ubi time onstraint solver for intervals. Our solveris based on the usual [SW04, TG07℄ enoding of intervals by two integers in Z.The main hallenge is the translation of an interval onstraint system with fullmultipliation into an integer onstraint system.An interval I is subset of Z of the form {x ∈ Z; a ≤ x ≤ b} where a, b ∈ Z.We denote by I the omplete lattie of intervals partially ordered with the inlu-sion relation ⊑. The inverse −I of an interval I, the sum and the multipliationof two intervals I1 and I2 are de�ned as follows:
−I = {−x; x ∈ I}

I1 + I2 = {x1 + x2; (x1, x2) ∈ I1 × I2}
I1 . I2 =

⊔

{x1.x2; (x1, x2) ∈ I1 × I2}We onsider interval onstraints of the following forms where I ∈ I:
X ⊒ −X1 X ⊒ I X ⊒ X1 + X2 X ⊒ X1 ⊓ I X ⊒ X1.X213



Observe that we allow arbitrary multipliation between intervals, but we restritintersetion to intervals with a onstant interval.We say that an interval onstraint system P = (X , C) has the positive-multipliation property if for any onstraint c ∈ C of the form X ⊒ X1.X2, theintervals ΛP(X1) and ΛP(X2) are inluded in N. Given an interval onstraintsystem P = (X , C) we an e�etively ompute an interval onstraint system P′ =
(X ′, C′) satisfying this property and suh that X ⊆ X ′ and ΛP(X) = ΛP′(X)for any X ∈ X . This onstraint system P′ is obtained from P by replaing theonstraints X ⊒ X1.X2 by the following onstraints:

X ⊒ X1,u.X2,u X1,u ⊒ X1 ⊓N
X ⊒ X1,l.X2,l X2,u ⊒ X2 ⊓N
X ⊒ −X1,u.X2,l X1,l ⊒ (−X1) ⊓ N
X ⊒ −X1,l.X2,u X2,l ⊒ (−X2) ⊓ NIntuitively X1,u and X2,u orresponds to the positive parts of X1 and X2, while

X1,l and X2,l orresponds to the negative parts.Let us provide our onstrution for translating an interval onstraint system
P = (X , C) having the positive multipliation property into an integer onstraintsystem P′ = (X ′, C′). Sine an interval I an be naturally enoded by twointegers I−, I+ ∈ Z de�ned as the least upper bound of respetively −I and I,we naturally assume that X ′ ontains two integer variable X− and X+ enodingeah interval variable X ∈ X . In order to extrat from the least solution of P′ theleast solution of P, we are looking for an integer onstraint system P′ satisfying
(ΛP(X))− = ΛP′(X−) and (ΛP(X))+ = ΛP′(X+) for any X ∈ X .As expeted, a onstraint X ⊒ −X1 is onverted into X+ ≥ X−1 and X− ≥
X+

1 , a onstraint X ⊒ I into X+ ≥ I+ and X− ≥ I−, and a onstraint X ⊒
X1 + X2 into X− ≥ X−1 + X−2 and X− ≥ X−1 + X−2 . However, a onstraint
X ⊒ X1⊓I annot be simply translated into X− ≥ X−1 ∧I− and X+ ≥ X+

1 ∧I+.In fat, these onstraints may introdue impreision when ΛP(X) ∩ I = ∅. Weuse test funtions to overome this problem. Suh a onstraint is translated intothe following integer onstraints:
X− ≥ θ≥−I+(X−1 , θ≥−I−(X+

1 , X−1 ∧ I−))

X+ ≥ θ≥−I−(X+
1 , θ≥−I+(X−1 , X+

1 ∧ I+))For the same reason, the onstraint X ⊒ X1.X2 annot be simply onvertedinto X− ≥ mul−(X−1 , X−2 ) and X+ ≥ mul+(X+
1 , X+

2 ). Instead, we onsider thefollowing onstraints:
X− ≥ θ>−∞(X−1 , θ>−∞(X+

1 , θ>−∞(X−2 , θ>−∞(X+
2 , mul−(X−1 , X−2 )))))

X+ ≥ θ>−∞(X+
1 , θ>−∞(X−1 , θ>−∞(X+

2 , θ>−∞(X−2 , mul+(X+
1 , X+

2 )))))Observe in fat that X− ≥ mul−(X−1 , X−2 ) and X+ ≥ mul+(X+
1 , X+

2 ) are preiseonstraint when the intervals I1 = ΛP(X1) and I2 = ΛP(X2) are non empty.14



Sine, if this ondition does not hold then I1.I2 = ∅, the previous enodingonsider this ase by testing if the values of X−1 , X+
1 , X−2 , X+

2 are stritlygreater than −∞.Now, observe that the integer onstraint system P′ satis�es the equalities
(ΛP(X))+ = ΛP′(X+) and (ΛP(X))− = ΛP′(X−) for any X ∈ X . Thus, wehave proved the following theorem.Theorem 4.1. The least solution of an interval onstraint system P = (X , C)with full multipliation an by omputed in time O((|X | + |C|)3) with integermanipulations performed in O(1).Remark 4.2. We dedue that any interval onstraint system is MFP-�attable.5 Conlusion and Future WorkIn this paper we have extended the aeleration framework from symboli veri�-ation to the omputation of MFP-solutions in data-�ow analysis. Our approahleads to an e�ient ubi-time algorithm for solving interval onstraints withfull addition and multipliation, and intersetion with a onstant.As future work, it would be interesting to ombine this result with strategyiteration tehniques onsidered in [TG07℄ in order to obtain a polynomial timealgorithm for the extension with full intersetion. We also intend to investigatethe appliation of the aeleration framework to other abstrat domains.Referenes[ABS01℄ A. Annihini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reah-ability analysis of omplex systems. In Pro. 13th Int. Conf. ComputerAided Veri�ation (CAV'2001), Paris, Frane, July 2001, volume 2102of Leture Notes in Computer Siene, pages 368�372. Springer, 2001.[BFLP03℄ S. Bardin, A. Finkel, J. Leroux, and L. Petrui. FAST: Fast Aelerationof Symboli Transition systems. In Pro. 15th Int. Conf. Computer AidedVeri�ation (CAV'2003), Boulder, CO, USA, July 2003, volume 2725 ofLeture Notes in Computer Siene, pages 118�121. Springer, 2003.[BFLS05℄ S. Bardin, A. Finkel, J. Leroux, and P. Shnoebelen. Flat aeleration insymboli model heking. In Pro. 3rd Int. Symp. Automated Tehnologyfor Veri�ation and Analysis (ATVA'05), Taipei, Taiwan, Ot. 2005, vol-ume 3707 of Leture Notes in Computer Siene, pages 474�488. Springer,2005.[BGWW97℄ B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power ofQDDs. In Pro. Stati Analysis 4th Int. Symp. (SAS'97), Paris, Frane,Sep. 1997, volume 1302 of Leture Notes in Computer Siene, pages172�186. Springer, 1997.[BW94℄ B. Boigelot and P. Wolper. Symboli veri�ation with periodi sets. InPro. 6th Int. Conf. Computer Aided Veri�ation (CAV'94), Stanford,CA, USA, June 1994, volume 818 of Leture Notes in Computer Siene,pages 55�67. Springer, 1994.15
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A Proof of Lemma 3.2Lemma 3.2. Let P be a yli bounded-inreasing onstraint system. If ρ0 is apre-solution of P that does not lower-saturate any onstraint, then either ρ0 is asolution or JCK∗ (ρ0) upper-saturates a onstraint.Proof. Let X0 → c1 → X1 → · · · → cn → Xn = X0 be the unique (up to ayli permutation) yle in the graph assoiated to P.Let us prove that for any pre-solution ρ that is not a solution and thatdoes not lower-saturate any onstraint, there exists a onstraint c ∈ C suhthat ρ′ = JcK (ρ) is a pre-solution satisfying ρ′ > ρ that either upper-saturatesa onstraint or that is not a solution. Sine ρ is not a solution, there exists aonstraint ci−1 suh that the valuation ρ′ = Jci−1K (ρ) satis�es ρ′ 6≤ ρ. As cionly modi�es the value of Xi−1, we get ρ′(Xi−1) > ρ(Xi−1). Observe that if ρ′upper-saturates ci−1 we are done. Let us assume that ρ′ does not upper-saturate
ci−1. Let us show that ρ′ is not a solution of C. As ρ is a pre-solution and ciis the unique variable that modi�es Xi, we have ρ(Xi) ≤ JciK (ρ)(Xi). Sine
ρ(Xi−1) < ρ′(Xi−1) and ci is neither upper-saturate nor lower-saturate for ρ′and ρ we get JciK (ρ)(Xi) < JciK (ρ′)(Xi) from ρ < ρ′. The relations ρ(Xi) =
ρ′(Xi), ρ(Xi) ≤ JciK (ρ)(Xi) and JciK (ρ)(Xi) < JciK (ρ′)(Xi) provide the relation
JciK (ρ′)(Xi) > ρ′(Xi). Thus ρ′ is not a solution.Assume by ontradition that JCK∗ (ρ0) does not upper-saturate a onstraint.Sine ρ0 is a pre-solution that is not a solution and suh that any onstraint c ∈ Cis not lower-saturated, from the previous paragraph, we get an in�nite sequene
ρ0 < . . . < ρk < . . . of valuations satisfying ρk ≤ JCK∗ (ρ0). We dedue that thereexists a variable Xi suh that ∨k≥0ρk(Xi) = +∞. Thus JCK∗ (ρ0)(Xi) = +∞ andwe have proved that JCK∗ (ρ0) upper-saturates ci+1. This ontradition provesthat JCK∗ (ρ0) upper-saturates at least one onstraint in C. ⊓⊔3 Proof of Proposition 3.3Proposition 3.3. The algorithm CyliSolve returns JCK∗ (ρ0) for any ylionstraint system P and for any valuation ρ0.Proof. Let ρ1, ρ2, ρ3, ρ4, and ρ5 be the value of ρ just after the 1st, the 2sd, the3th, the 4th and the 5th loops.Let us �rst show that if the i0th iteration of the seond loop does not modifythe valuation ρ then ρ2 is a solution of P. Observe that the iterations i0, . . . , n ofthe �rst loop and the iterations 1, . . . , i0−1 of the seond loop provide a valuation
ρ suh that ρ(Xi) ≥ JciK (ρ)(Xi) for any i 6= i0. As the i0th iteration of the seondloop does not modify ρ we dedue that ρ(Xi0) ≥ Jci0K (Xi0). Therefore ρ is asolution. We dedue that ρ remains unhanged during the remaining iterations
i0, . . . , n of the seond loop. Thus ρ2 is a solution of P.Assume that ρ2 is not a pre-solution of P. There exists i0 suh that Jci0K (ρ)(Xi0) 6≥
ρ(Xi0). We dedue that the value of ρ has not been modi�ed at the i0th iterationof the 2sd loop. Thus, from the previous paragraph, ρ2 is a solution.17



Next, assume that a onstraint ci0 is lower-saturated by ρ2. Sine after the
i0-iteration of the �rst loop we have ρ(Xi0) ≥ Jci0K (⊥), we dedue that the i0thiteration of the seond loop does not modify ρ. From the �rst paragraph we alsodedue that ρ2 is a solution of P.As the line 9 of the algorithm detets if ρ2 is a solution, we an assume that
ρ2 is not a solution. From the two previous paragraph we dedue that ρ2 is apre-solution of P and the onstraints are not lower-saturated. From Lemma 3.2we dedue that JCK∗ (ρ2) upper-saturates at least one onstraint denoted by ci0 .Observe that JCK∗ (ρ2) = JCK∗ (ρ0).Let us show that JcK (JCK∗ (ρ0)) = JCK∗ (ρ0) for any onstraint c ∈ C. Sine
ρ2 is a pre-solution we get JCK (JCK∗ (ρ2)) = JCK∗ (ρ2). Moreover, as the outputvariables of two distint onstraints are distint, we dedue that JcK (JCK∗ (ρ2)) =
JCK∗ (ρ2) for any onstraint c ∈ C. As JCK∗ (ρ0) = JCK∗ (ρ2) we get the property.We dedue that the valuation ρ′ = ρ ∧ JcK (ρ) satis�es JCK∗ (ρ0) ≤ ρ′ for anyvaluation ρ suh that JCK∗ (ρ0) ≤ ρ and for any onstraint c ∈ C.After the 3th loop of the algorithm, we have JCK∗ (ρ0) ≤ ρ3, the previousparagraph proves that JCK∗ (ρ0) ≤ ρ is an invariant of the remaining of theprogram. Observe that at the i0-th iteration of the 4th loop, we have ρ(Xi0) =
JCK∗ (ρ0)(Xi0). Thanks to the remaining iterations i0 + 1, . . . , n of the 4th loopand the �rst iterations 1, . . . i0− 1 of the 5th loop, we get ρ(Xi) = JCK∗ (ρ0)(Xi)for any i sine JcK (JCK∗ (ρ0)) = JCK∗ (ρ0) for any onstraint c ∈ C. Thus atthis point of the exeution we have ρ = JCK∗ (ρ0). Observe that ρ is unhangedduring the remaining iterations of the 5th loop. Thus, the algorithm returns
JCK∗ (ρ0). ⊓⊔3 Proof of Proposition 3.4Proposition 3.4. The algorithm SolveBI returns the least solution JCK∗ (ρ0) ofa bounded-inreasing onstraint system P greater than a valuation ρ0. Moreover,the number of times the while loop is exeuted is bounded by one plus the numberof onstraints that are upper-saturated for JCK∗ (ρ0) but not for ρ0.Proof. Note that λ is a partially de�ned funtion from X to C. At the beginningof the while loop this funtion is empty. Then, it is updated when the algorithmreplaes a valuation ρ by ρ∨ JcK (ρ). Denoting by X the output variable of c, thevalue λ(X) beomes equal to c. That means λ keeps in memory the last on-straint that have modi�ed a variable. Observe also that initially ρ = ρ0∨JCK (ρ0).Thus, if during the exeution of the algorithm ρ(X) is updates by a onstraint
c then neessary c is not lower-saturated. That means if λ(X) is de�ned then
c = λ(X) is not lower-saturated.Let ρ0 and ρ1 be the values of ρ respetively before and after the exeutionof the �rst two nested loops (line 5-9) and let ρ2 be the value of ρ after the18



exeution of line 14.We are going to prove that if the sets of upper-saturated onstraints for ρ0 and
ρ1 are equal and if there does not exist a yle satisfying the ondition given line10, then ρ1 is a solution of P. Let us onsider the subset set of onstraints C′ =
{λ(X); X ∈ X} and let us onsider the graph G′ assoiated to the onstraintsystem (X , C′). We onstrut the graph G1 obtained from G by keeping onlythe transitions (X, c) if c = λ(X) and the transitions (Xi, c). Observe that G1 isayli. Thus, there exists an enumeration c1, . . . , cm of the set of onstraints C′suh that if there exists a path from ci1 to ci2 in G1 then i1 ≤ i2. Let us denoteby Xi the output variable of ci.Let us prove by indution over i that for any j ∈ {1, . . . , i} we have ρ1(Xj) ≤
Jc1 . . . cjK (ρ0)(Xj). The rank i = 0 is immediate sine in this ase {1, . . . , i} isempty. Let us assume that rank i − 1 < n is true and let us prove the rank i.Sine λ(Xi) = ci we dedue that the valuation ρ1(Xi) has been modi�ed thanksto ci. Thus, denoting by ρ the valuation in the algorithm just before this up-date, we dedue that ρ1(Xi) = JciK (ρ)(Xi) and ρ0 ≤ ρ ≤ ρ1. Let us prove that
ρ(Xi,j) ≤ Jc1 . . . ci−1K (ρ0)(Xi,j) for any input variable Xi,j of ci. Observe thatif Xi,j ∈ X ′ then ρ1(Xi,j) = ρ(Xi,j) = ρ0(Xi,j) by onstrution of λ and inpartiular ρ(Xi,j) ≤ Jc1 . . . ci−1K (ρ0)(Xi,j) sine c1, . . . , ci−1 do not modify thevariable Xi,j . Otherwise, if Xi,j ∈ X ′, there exists i′ < i satisfying Xi,j =
Xi′ . By indution hypothesis, we have ρ1(Xi′) ≤ Jc1 . . . ci′K (ρ0)(Xi′). Sine
c1, . . . , cm have distint output variables, we dedue that Jc1 . . . ci′K (ρ0)(Xi′ ) =
Jc1 . . . ci−1K (ρ0)(Xi′ ). Thus ρ1(Xi,j) ≤ Jc1 . . . ci−1K (ρ0)(Xi,j) and from ρ ≤ ρ1,we get ρ(Xi,j) ≤ Jc1 . . . ci−1K (ρ0)(Xi,j) for any input variable Xi,j . Therefore
JciK (ρ)(Xi) ≤ Jc1 . . . ciK (ρ0)(Xi). From ρ1(Xi) = JciK (ρ)(Xi), we get ρ1(Xi) ≤
Jc1 . . . ciK (ρ0)(Xi) and we have proved the indution.We dedue the relation ρ1 ≤ Jc1 . . . cmK (ρ0) sine c1, ..., cm have distintoutput variables. Observe that after the �rst exeution of the loop 6-9, we get
ρ ≥ Jc1K (ρ0), after the seond ρ ≥ Jc1.c2K (ρ0). By indution, after m exeutionswe get ρ ≥ Jc1 . . . cmK (ρ0) ≥ ρ1. Sine m ≤ |C|, this loop is exeuted at least onemore time. Note that after this exeution, we have ρ ≥ JcK (ρ1) for any c ∈ C.Sine ρ1 ≥ ρ, we have proved that ρ1 ≥ JCK (ρ1). Therefore ρ1 is a solution of
C. Next, assume that there exists a yle X0 → c1 → X1 · · · cn → Xn = X0that satis�es ci = λ(Xi). From the �rst paragraph we dedue that c1, . . . , cn arenot lower-saturated. Let us prove that there exists a onstraint upper-saturatedfor ρ2 that is not upper-saturated for ρ0. Naturally, if there exists a onstraintsupper-saturated from ρ1 that is not upper-saturated for ρ0, sine ρ1 ≤ ρ2, weare done. Thus, we an assume that the onstraints c1, ..., cn are not upper-saturated for ρ1. By de�nition of λ, we get ρi(Xi) ≤ JciK (ρ). Thus ρ′ is a pre-solution of P′. Let Xi be the last variable amongst X0, . . . , Xn−1 that have beenupdated. Sine ci+1 is not upper-saturated and not lower-saturated for ρ1 andsine the value of Xi has inreased when this last update appeared, we dedue19



that ρ′(Xi+1) 6≥ Jci+1K (ρ′)(Xi+1). Thus ρ′ is not a solution and from lemma 3.2we dedue that ρ′′ upper-saturates at least one onstraint ci. Thus ρ2 upper-saturates a onstraints that is not upper-saturated by ρ1.Finally, note that eah time the while loop is exeuted at least one bounded-inreasing onstraint beomes upper-saturated. As every upper-saturated on-straint remains upper-saturated, we are done. ⊓⊔
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